Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.918
Filter
2.
Radiat Oncol ; 19(1): 48, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622628

ABSTRACT

BACKGROUND: Tumor regression and organ movements indicate that a large margin is used to ensure target volume coverage during radiotherapy. This study aimed to quantify inter-fractional movements of the uterus and cervix in patients with cervical cancer undergoing radiotherapy and to evaluate the clinical target volume (CTV) coverage. METHODS: This study analyzed 303 iterative cone beam computed tomography (iCBCT) scans from 15 cervical cancer patients undergoing external beam radiotherapy. CTVs of the uterus (CTV-U) and cervix (CTV-C) contours were delineated based on each iCBCT image. CTV-U encompassed the uterus, while CTV-C included the cervix, vagina, and adjacent parametrial regions. Compared with the planning CTV, the movement of CTV-U and CTV-C in the anterior-posterior, superior-inferior, and lateral directions between iCBCT scans was measured. Uniform expansions were applied to the planning CTV to assess target coverage. RESULTS: The motion (mean ± standard deviation) in the CTV-U position was 8.3 ± 4.1 mm in the left, 9.8 ± 4.4 mm in the right, 12.6 ± 4.0 mm in the anterior, 8.8 ± 5.1 mm in the posterior, 5.7 ± 5.4 mm in the superior, and 3.0 ± 3.2 mm in the inferior direction. The mean CTV-C displacement was 7.3 ± 3.2 mm in the left, 8.6 ± 3.8 mm in the right, 9.0 ± 6.1 mm in the anterior, 8.4 ± 3.6 mm in the posterior, 5.0 ± 5.0 mm in the superior, and 3.0 ± 2.5 mm in the inferior direction. Compared with the other tumor (T) stages, CTV-U and CTV-C motion in stage T1 was larger. A uniform CTV planning treatment volume margin of 15 mm failed to encompass the CTV-U and CTV-C in 11.1% and 2.2% of all fractions, respectively. The mean volume change of CTV-U and CTV-C were 150% and 51%, respectively, compared with the planning CTV. CONCLUSIONS: Movements of the uterine corpus are larger than those of the cervix. The likelihood of missing the CTV is significantly increased due to inter-fractional motion when utilizing traditional planning margins. Early T stage may require larger margins. Personal radiotherapy margining is needed to improve treatment accuracy.


Subject(s)
Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Motion , Pelvis/pathology , Cone-Beam Computed Tomography/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
3.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38588646

ABSTRACT

Objective.In current radiograph-based intra-fraction markerless target-tracking, digitally reconstructed radiographs (DRRs) from planning CTs (CT-DRRs) are often used to train deep learning models that extract information from the intra-fraction radiographs acquired during treatment. Traditional DRR algorithms were designed for patient alignment (i.e.bone matching) and may not replicate the radiographic image quality of intra-fraction radiographs at treatment. Hypothetically, generating DRRs from pre-treatment Cone-Beam CTs (CBCT-DRRs) with DRR algorithms incorporating physical modelling of on-board-imagers (OBIs) could improve the similarity between intra-fraction radiographs and DRRs by eliminating inter-fraction variation and reducing image-quality mismatches between radiographs and DRRs. In this study, we test the two hypotheses that intra-fraction radiographs are more similar to CBCT-DRRs than CT-DRRs, and that intra-fraction radiographs are more similar to DRRs from algorithms incorporating physical models of OBI components than DRRs from algorithms omitting these models.Approach.DRRs were generated from CBCT and CT image sets collected from 20 patients undergoing pancreas stereotactic body radiotherapy. CBCT-DRRs and CT-DRRs were generated replicating the treatment position of patients and the OBI geometry during intra-fraction radiograph acquisition. To investigate whether the modelling of physical OBI components influenced radiograph-DRR similarity, four DRR algorithms were applied for the generation of CBCT-DRRs and CT-DRRs, incorporating and omitting different combinations of OBI component models. The four DRR algorithms were: a traditional DRR algorithm, a DRR algorithm with source-spectrum modelling, a DRR algorithm with source-spectrum and detector modelling, and a DRR algorithm with source-spectrum, detector and patient material modelling. Similarity between radiographs and matched DRRs was quantified using Pearson's correlation and Czekanowski's index, calculated on a per-image basis. Distributions of correlations and indexes were compared to test each of the hypotheses. Distribution differences were determined to be statistically significant when Wilcoxon's signed rank test and the Kolmogorov-Smirnov two sample test returnedp≤ 0.05 for both tests.Main results.Intra-fraction radiographs were more similar to CBCT-DRRs than CT-DRRs for both metrics across all algorithms, with allp≤ 0.007. Source-spectrum modelling improved radiograph-DRR similarity for both metrics, with allp< 10-6. OBI detector modelling and patient material modelling did not influence radiograph-DRR similarity for either metric.Significance.Generating DRRs from pre-treatment CBCT-DRRs is feasible, and incorporating CBCT-DRRs into markerless target-tracking methods may promote improved target-tracking accuracies. Incorporating source-spectrum modelling into a treatment planning system's DRR algorithms may reinforce the safe treatment of cancer patients by aiding in patient alignment.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Pancreatic Neoplasms , Radiosurgery , Humans , Cone-Beam Computed Tomography/methods , Radiosurgery/methods , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/methods , Deep Learning , Tomography, X-Ray Computed/methods , Pancreas/diagnostic imaging , Pancreas/surgery , Phantoms, Imaging
4.
Cancer Radiother ; 28(2): 218-227, 2024 Apr.
Article in French | MEDLINE | ID: mdl-38599940

ABSTRACT

In this article, we propose a consensus delineation of postoperative clinical target volumes for the primary tumour in maxillary sinus and nasal cavity cancers. These guidelines are developed based on radioanatomy and the natural history of those cancers. They require the fusion of the planning CT with preoperative imaging for accurate positioning of the initial GTV and the combined use of the geometric and anatomical concepts for the delineation of clinical target volume for the primary tumour. This article does not discuss the indications of external radiotherapy (nor concurrent systemic treatment) but focuses on target volumes when there is an indication for radiotherapy.


Subject(s)
Mouth Neoplasms , Paranasal Sinus Neoplasms , Humans , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/surgery , Maxillary Sinus/pathology , Nasal Cavity/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Mouth Neoplasms/pathology
5.
Cancer Radiother ; 28(2): 195-201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38599941

ABSTRACT

PURPOSE: Preclinical data demonstrated that the use of proton minibeam radiotherapy reduces the risk of toxicity in healthy tissue. Ventricular tachycardia radioablation is an area under clinical investigation in proton beam therapy. We sought to simulate a ventricular tachycardia radioablation with proton minibeams and to demonstrate that it was possible to obtain a homogeneous coverage of an arrhythmogenic cardiac zone with this technique. MATERIAL AND METHODS: An arrhythmogenic target volume was defined on the simulation CT scan of a patient, localized in the lateral wall of the left ventricle. A dose of 25Gy was planned to be delivered by proton minibeam radiotherapy, simulated using a Monte Carlo code (TOPAS v.3.7) with a collimator of 19 0.4 mm-wide slits spaced 3mm apart. The main objective of the study was to obtain a plan ensuring at least 93% of the prescription dose in 93% of the planning target volume without exceeding 110% of the prescribed dose in the planning target volume. RESULTS: The average dose in the planning treatment volume in proton minibeam radiotherapy was 25.12Gy. The percentage of the planning target volume receiving 93% (V93%), 110% (V110%), and 95% (V95%) of the prescribed dose was 94.25%, 0%, and 92.6% respectively. The lateral penumbra was 6.6mm. The mean value of the peak-to-valley-dose ratio in the planning target volume was 1.06. The mean heart dose was 2.54Gy versus 5.95Gy with stereotactic photon beam irradiation. CONCLUSION: This proof-of-concept study shows that proton minibeam radiotherapy can achieve a homogeneous coverage of an arrhythmogenic cardiac zone, reducing the dose at the normal tissues. This technique, ensuring could theoretically reduce the risk of late pulmonary and breast fibrosis, as well as cardiac toxicity as seen in previous biological studies in proton minibeam radiotherapy.


Subject(s)
Proton Therapy , Protons , Humans , Feasibility Studies , Proton Therapy/methods , Radiometry , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Monte Carlo Method
6.
Technol Cancer Res Treat ; 23: 15330338241241898, 2024.
Article in English | MEDLINE | ID: mdl-38557213

ABSTRACT

Introduction: In this study, we sought to develop a thermoplastic patient-specific helmet bolus that could deliver a uniform therapeutic dose to the target and minimize the dose to the normal brain during whole-scalp treatment with a humanoid head phantom. Methods: The bolus material was a commercial thermoplastic used for patient immobilization, and the holes in the netting were filled with melted paraffin. We compared volumetric-modulated arc therapy treatment plans with and without the bolus for quantitative dose distribution analysis. We analyzed the dose distribution in the region of interest to compare dose differences between target and normal organs. For quantitative analysis of treatment dose, OSLD chips were attached at the vertex (VX), posterior occipital (PO), right (RT), and left temporal (LT) locations. Results: The average dose in the clinical target volume was 6553.8 cGy (99.3%) with bolus and 5874 cGy (89%) without bolus, differing by more than 10% from the prescribed dose (6600 cGy) to the scalp target. For the normal brain, it was 3747.8 cGy (56.8%) with bolus and 5484.6 cGy (83.1%) without bolus. These results show that while the dose to the treatment target decreased, the average dose to the normal brain, which is mostly inside the treatment target, increased by more than 25%. With the bolus, the OSLD measured dose was 102.5 ± 1.2% for VX and 101.5 ± 1.9%, 95.9 ± 1.9%, and 81.8 ± 2.1% for PO, RT, and LT, respectively. In addition, the average dose in the treatment plan was 102%, 101%, 93.6%, and 80.7% for VX, PO, RT, and LT. When no bolus was administered, 59.6 ± 2.4%, 112.6 ± 1.8%, 47.1 ± 1.6%, and 53.1 ± 2.3% were assessed as OSLD doses for VX, PO, RT, and LT, respectively. Conclusion: This study proposed a method to fabricate patient-specific boluses that are highly reproducible, accessible, and easy to fabricate for radiotherapy to the entire scalp and can effectively spare normal tissue while delivering sufficient surface dose.


Subject(s)
Organothiophosphorus Compounds , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Scalp , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Feasibility Studies , Head Protective Devices , Organs at Risk/radiation effects
7.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38652667

ABSTRACT

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in thex-axis,y-axis, major axis, minor axis, and relative positional errors in thex-axis andy-axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.


Subject(s)
Neural Networks, Computer , Proton Therapy , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Proton Therapy/methods , Radiometry/methods , Humans , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Machine Learning , Reproducibility of Results , Protons
8.
Sci Rep ; 14(1): 8504, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38605094

ABSTRACT

This work aims to investigate the clinical feasibility of deep learning-based synthetic CT images for cervix cancer, comparing them to MR for calculating attenuation (MRCAT). Patient cohort with 50 pairs of T2-weighted MR and CT images from cervical cancer patients was split into 40 for training and 10 for testing phases. We conducted deformable image registration and Nyul intensity normalization for MR images to maximize the similarity between MR and CT images as a preprocessing step. The processed images were plugged into a deep learning model, generative adversarial network. To prove clinical feasibility, we assessed the accuracy of synthetic CT images in image similarity using structural similarity (SSIM) and mean-absolute-error (MAE) and dosimetry similarity using gamma passing rate (GPR). Dose calculation was performed on the true and synthetic CT images with a commercial Monte Carlo algorithm. Synthetic CT images generated by deep learning outperformed MRCAT images in image similarity by 1.5% in SSIM, and 18.5 HU in MAE. In dosimetry, the DL-based synthetic CT images achieved 98.71% and 96.39% in the GPR at 1% and 1 mm criterion with 10% and 60% cut-off values of the prescription dose, which were 0.9% and 5.1% greater GPRs over MRCAT images.


Subject(s)
Deep Learning , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Feasibility Studies , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods
9.
Radiat Oncol ; 19(1): 49, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627747

ABSTRACT

OBJECTIVE: This study evaluates various craniospinal irradiation (CSI) techniques used in Turkish centers to understand their advantages, disadvantages and overall effectiveness, with a focus on enhancing dose distribution. METHODS: Anonymized CT scans of adult and pediatric patients, alongside target volumes and organ-at-risk (OAR) structures, were shared with 25 local radiotherapy centers. They were tasked to develop optimal treatment plans delivering 36 Gy in 20 fractions with 95% PTV coverage, while minimizing OAR exposure. The same CT data was sent to a US proton therapy center for comparison. Various planning systems and treatment techniques (3D conformal RT, IMRT, VMAT, tomotherapy) were utilized. Elekta Proknow software was used to analyze parameters, assess dose distributions, mean doses, conformity index (CI), and homogeneity index (HI) for both target volumes and OARs. Comparisons were made against proton therapy. RESULTS: All techniques consistently achieved excellent PTV coverage (V95 > 98%) for both adult and pediatric patients. Tomotherapy closely approached ideal Dmean doses for all PTVs, while 3D-CRT had higher Dmean for PTV_brain. Tomotherapy excelled in CI and HI for PTVs. IMRT resulted in lower pediatric heart, kidney, parotid, and eye doses, while 3D-CRT achieved the lowest adult lung doses. Tomotherapy approached proton therapy doses for adult kidneys and thyroid, while IMRT excelled for adult heart, kidney, parotid, esophagus, and eyes. CONCLUSION: Modern radiotherapy techniques offer improved target coverage and OAR protection. However, 3D techniques are continued to be used for CSI. Notably, proton therapy stands out as the most efficient approach, closely followed by Tomotherapy in terms of achieving superior target coverage and OAR protection.


Subject(s)
Craniospinal Irradiation , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Adult , Humans , Child , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Craniospinal Irradiation/methods , Turkey , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods
10.
Technol Cancer Res Treat ; 23: 15330338241242654, 2024.
Article in English | MEDLINE | ID: mdl-38584413

ABSTRACT

Purpose: Deep learning (DL) is widely used in dose prediction for radiation oncology, multiple DL techniques comparison is often lacking in the literature. To compare the performance of 4 state-of-the-art DL models in predicting the voxel-level dose distribution for cervical cancer volumetric modulated arc therapy (VMAT). Methods and Materials: A total of 261 patients' plans for cervical cancer were retrieved in this retrospective study. A three-channel feature map, consisting of a planning target volume (PTV) mask, organs at risk (OARs) mask, and CT image was fed into the three-dimensional (3D) U-Net and its 3 variants models. The data set was randomly divided into 80% as training-validation and 20% as testing set, respectively. The model performance was evaluated on the 52 testing patients by comparing the generated dose distributions against the clinical approved ground truth (GT) using mean absolute error (MAE), dose map difference (GT-predicted), clinical dosimetric indices, and dice similarity coefficients (DSC). Results: The 3D U-Net and its 3 variants DL models exhibited promising performance with a maximum MAE within the PTV 0.83% ± 0.67% in the UNETR model. The maximum MAE among the OARs is the left femoral head, which reached 6.95% ± 6.55%. For the body, the maximum MAE was observed in UNETR, which is 1.19 ± 0.86%, and the minimum MAE was 0.94 ± 0.85% for 3D U-Net. The average error of the Dmean difference for different OARs is within 2.5 Gy. The average error of V40 difference for the bladder and rectum is about 5%. The mean DSC under different isodose volumes was above 90%. Conclusions: DL models can predict the voxel-level dose distribution accurately for cervical cancer VMAT treatment plans. All models demonstrated almost analogous performance for voxel-wise dose prediction maps. Considering all voxels within the body, 3D U-Net showed the best performance. The state-of-the-art DL models are of great significance for further clinical applications of cervical cancer VMAT.


Subject(s)
Deep Learning , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Retrospective Studies , Organs at Risk
11.
Phys Med Biol ; 69(9)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38565128

ABSTRACT

Objective. Radio-opaque markers are recommended for image-guided radiotherapy in liver stereotactic ablative radiotherapy (SABR), but their implantation is invasive. We evaluate in thisin-silicostudy the feasibility of cone-beam computed tomography-guided stereotactic online-adaptive radiotherapy (CBCT-STAR) to propagate the target volumes without implanting radio-opaque markers and assess its consequence on the margin that should be used in that context.Approach. An emulator of a CBCT-STAR-dedicated treatment planning system was used to generate plans for 32 liver SABR patients. Three target volume propagation strategies were compared, analysing the volume difference between the GTVPropagatedand the GTVConventional, the vector lengths between their centres of mass (lCoM), and the 95th percentile of the Hausdorff distance between these two volumes (HD95). These propagation strategies were: (1) structure-guided deformable registration with deformable GTV propagation; (2) rigid registration with rigid GTV propagation; and (3) image-guided deformable registration with rigid GTV propagation. Adaptive margin calculation integrated propagation errors, while interfraction position errors were removed. Scheduled plans (PlanNon-adaptive) and daily-adapted plans (PlanAdaptive) were compared for each treatment fraction.Main results.The image-guided deformable registration with rigid GTV propagation was the best propagation strategy regarding tolCoM(mean: 4.3 +/- 2.1 mm), HD95 (mean 4.8 +/- 3.2 mm) and volume preservation between GTVPropagatedand GTVConventional. This resulted in a planning target volume (PTV) margin increase (+69.1% in volume on average). Online adaptation (PlanAdaptive) reduced the violation rate of the most important dose constraints ('priority 1 constraints', 4.2 versus 0.9%, respectively;p< 0.001) and even improved target volume coverage compared to non-adaptive plans (PlanNon-adaptive).Significance. Markerless CBCT-STAR for liver tumours is feasible using Image-guided deformable registration with rigid GTV propagation. Despite the cost in terms of PTV volumes, daily adaptation reduces constraints violation and restores target volumes coverage.


Subject(s)
Cone-Beam Computed Tomography , Feasibility Studies , Liver Neoplasms , Liver , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Liver/diagnostic imaging , Liver/radiation effects , Liver Neoplasms/radiotherapy , Liver Neoplasms/diagnostic imaging
12.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605613

ABSTRACT

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Algorithms , Calibration , Electronics , Radiotherapy, Intensity-Modulated/methods , Radiometry/methods
13.
Radiat Oncol ; 19(1): 45, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589961

ABSTRACT

BACKGROUND: Current automated planning solutions are calibrated using trial and error or machine learning on historical datasets. Neither method allows for the intuitive exploration of differing trade-off options during calibration, which may aid in ensuring automated solutions align with clinical preference. Pareto navigation provides this functionality and offers a potential calibration alternative. The purpose of this study was to validate an automated radiotherapy planning solution with a novel multi-dimensional Pareto navigation calibration interface across two external institutions for prostate cancer. METHODS: The implemented 'Pareto Guided Automated Planning' (PGAP) methodology was developed in RayStation using scripting and consisted of a Pareto navigation calibration interface built upon a 'Protocol Based Automatic Iterative Optimisation' planning framework. 30 previous patients were randomly selected by each institution (IA and IB), 10 for calibration and 20 for validation. Utilising the Pareto navigation interface automated protocols were calibrated to the institutions' clinical preferences. A single automated plan (VMATAuto) was generated for each validation patient with plan quality compared against the previously treated clinical plan (VMATClinical) both quantitatively, using a range of DVH metrics, and qualitatively through blind review at the external institution. RESULTS: PGAP led to marked improvements across the majority of rectal dose metrics, with Dmean reduced by 3.7 Gy and 1.8 Gy for IA and IB respectively (p < 0.001). For bladder, results were mixed with low and intermediate dose metrics reduced for IB but increased for IA. Differences, whilst statistically significant (p < 0.05) were small and not considered clinically relevant. The reduction in rectum dose was not at the expense of PTV coverage (D98% was generally improved with VMATAuto), but was somewhat detrimental to PTV conformality. The prioritisation of rectum over conformality was however aligned with preferences expressed during calibration and was a key driver in both institutions demonstrating a clear preference towards VMATAuto, with 31/40 considered superior to VMATClinical upon blind review. CONCLUSIONS: PGAP enabled intuitive adaptation of automated protocols to an institution's planning aims and yielded plans more congruent with the institution's clinical preference than the locally produced manual clinical plans.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Urinary Bladder , Prostatic Neoplasms/radiotherapy , Organs at Risk
14.
Radiat Oncol ; 19(1): 32, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459580

ABSTRACT

BACKGROUND: Centrally located lung tumours present a challenge because of their tendency to exhibit symptoms such as airway obstruction, atelectasis, and bleeding. Surgical resection of these tumours often requires sacrificing the lungs, making definitive radiotherapy the preferred alternative to avoid pneumonectomy. However, the proximity of these tumours to mediastinal organs at risk increases the potential for severe adverse events. To mitigate this risk, we propose a dual-method approach: deep inspiration breath-hold (DIBH) radiotherapy combined with adaptive radiotherapy. The aim of this single-centre, single-arm phase II study is to investigate the efficacy and safety of DIBH daily online adaptive radiotherapy. METHODS: Patients diagnosed with centrally located lung tumours according to the International Association for the Study of Lung Cancer recommendations, are enrolled and subjected to DIBH daily online adaptive radiotherapy. The primary endpoint is the one-year cumulative incidence of grade 3 or more severe adverse events, as classified by the Common Terminology Criteria for Adverse Events (CTCAE v5.0). DISCUSSION: Delivering definitive radiotherapy for centrally located lung tumours presents a dilemma between ensuring optimal dose coverage for the planning target volume and the associated increased risk of adverse events. DIBH provides measurable dosimetric benefits by increasing the normal lung volume and distancing the tumour from critical mediastinal organs at risk, leading to reduced toxicity. DIBH adaptive radiotherapy has been proposed as an adjunct treatment option for abdominal and pelvic cancers. If the application of DIBH adaptive radiotherapy to centrally located lung tumours proves successful, this approach could shape future phase III trials and offer novel perspectives in lung tumour radiotherapy. TRIAL REGISTRATION: Registered at the Japan Registry of Clinical Trials (jRCT; https://jrct.niph.go.jp/ ); registration number: jRCT1052230085 ( https://jrct.niph.go.jp/en-latest-detail/jRCT1052230085 ).


Subject(s)
Heart , Lung Neoplasms , Humans , Breath Holding , Organs at Risk , Lung Neoplasms/radiotherapy , Lung , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Clinical Trials, Phase II as Topic
15.
Radiat Oncol ; 19(1): 33, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459584

ABSTRACT

BACKGROUND: Radiotherapy (RT) is an important treatment modality for patients with brain malignancies. Traditionally, computed tomography (CT) images are used for RT treatment planning whereas magnetic resonance imaging (MRI) images are used for tumor delineation. Therefore, MRI and CT need to be registered, which is an error prone process. The purpose of this clinical study is to investigate the clinical feasibility of a deep learning-based MRI-only workflow for brain radiotherapy, that eliminates the registration uncertainty through calculation of a synthetic CT (sCT) from MRI data. METHODS: A total of 54 patients with an indication for radiation treatment of the brain and stereotactic mask immobilization will be recruited. All study patients will receive standard therapy and imaging including both CT and MRI. All patients will receive dedicated RT-MRI scans in treatment position. An sCT will be reconstructed from an acquired MRI DIXON-sequence using a commercially available deep learning solution on which subsequent radiotherapy planning will be performed. Through multiple quality assurance (QA) measures and reviews during the course of the study, the feasibility of an MRI-only workflow and comparative parameters between sCT and standard CT workflow will be investigated holistically. These QA measures include feasibility and quality of image guidance (IGRT) at the linear accelerator using sCT derived digitally reconstructed radiographs in addition to potential dosimetric deviations between the CT and sCT plan. The aim of this clinical study is to establish a brain MRI-only workflow as well as to identify risks and QA mechanisms to ensure a safe integration of deep learning-based sCT into radiotherapy planning and delivery. DISCUSSION: Compared to CT, MRI offers a superior soft tissue contrast without additional radiation dose to the patients. However, up to now, even though the dosimetrical equivalence of CT and sCT has been shown in several retrospective studies, MRI-only workflows have still not been widely adopted. The present study aims to determine feasibility and safety of deep learning-based MRI-only radiotherapy in a holistic manner incorporating the whole radiotherapy workflow. TRIAL REGISTRATION: NCT06106997.


Subject(s)
Brain Neoplasms , Deep Learning , Radiotherapy, Intensity-Modulated , Humans , Feasibility Studies , Retrospective Studies , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain/diagnostic imaging
16.
Technol Cancer Res Treat ; 23: 15330338241235058, 2024.
Article in English | MEDLINE | ID: mdl-38460959

ABSTRACT

Purpose: The aim of this study was to investigate whether variations in cranial angles and treatment accuracy during CyberKnife robotic radiosurgery necessitate adjustment of the margins of the planning target volume. Patients and Methods: Data from 66 patients receiving CyberKnife treatment for brain tumors were retrospectively analyzed. Patients were immobilized using a thermoplastic mask and headrest. The cranial angle was measured on planning CT and patients were divided into 2 groups: ≤10° (Group A) and >10° (Group B). Intrafractional motion was recorded using the CyberKnife tracking system over 50 min. Translational and rotational errors were compared between groups, and planning target volume margins were calculated. Results: In Group A, significant translational error differences were found along with the X-axis over time (P < .02). In Group B, significant differences occurred along with the Z-axis (P < .03). No significant rotational or 3-dimensional vector differences were found in either group. Group A had significantly lower Y-axis (P < .045) and roll axis (P < .005) errors compared to Group B. Estimated planning target volume margins in Group A were 0.56 mm (X), 0.46 mm (Y), and 0.47 mm (Z). In Group B, margins were 0.62 mm (X), 0.48 mm (Y), and 0.46 mm (Z). Margins covering 95% of intrafraction motion were 0.49 to 0.50 mm (X, Y, Z) and 0.69 mm (3-dimensional vector) for Group A, and 0.48 to 0.60 mm and 0.79 mm for Group B. With a 1-mm margin, complete coverage was achieved in Group A while 2.1% of vectors in Group B exceeded 1 mm. Conclusion: Adjusting cranial angle to ≤10° during thermoplastic mask molding provided better or similar intrafractional stability compared to >10°.


Subject(s)
Radiosurgery , Robotic Surgical Procedures , Robotics , Humans , Radiosurgery/methods , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods
17.
Phys Med ; 119: 103317, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430675

ABSTRACT

BACKGROUND: Classical radiation protocols are guided by physical dose delivered homogeneously over the target. Protocols are chosen to keep normal tissue complication probability (NTCP) at an acceptable level. Organs at risk (OAR) adjacent to the target volume could lead to underdosage of the tumor and a decrease of tumor control probability (TCP). The intent of our study was to explore a biology-based dose escalation: by keeping NTCP for OAR constant, radiation dose was to be maximized, allowing to result in heterogeneous dose distributions. METHODS: We used computed tomography datasets of 25 dogs with brain tumors, previously treated with 10x4 Gy (40 Gy to PTV D50). We generated 3 plans for each patient: A) original treatment plan with homogeneous dose distribution, B) heterogeneous dose distribution with strict adherence to the same NTCPs as in A), and C) heterogeneous dose distribution with adherence to NTCP <5%. For plan comparison, TCPs and TCP equivalent doses (homogenous target dose which results in the same TCP) were calculated. To enable the use of the generalized equivalent uniform dose (gEUD) metric of the tumor target in plan optimization, the calculated TCP values were used to obtain the volume effect parameter a. RESULTS: As intended, NTCPs for all OARs did not differ from plan A) to B). In plan C), however, NTCPs were significantly higher for brain (mean 2.5% (SD±1.9, 95%CI: 1.7,3.3), p<0.001), optic chiasm (mean 2.0% (SD±2.2, 95%CI: 1.0,2.8), p=0.010) compared to plan A), but no significant increase was found for the brainstem. For 24 of 25 of the evaluated patients, the heterogenous plans B) and C) led to an increase in target dose and projected increase in TCP compared to the homogenous plan A). Furthermore, the distribution of the projected individual TCP values as a function of the dose was found to be in good agreement with the population TCP model. CONCLUSION: Our study is a first step towards risk-adaptive radiation dose optimization. This strategy utilizes a biologic objective function based on TCP and NTCP instead of an objective function based on physical dose constraints.


Subject(s)
Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Dogs , Animals , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Brain , Probability , Biology
18.
Strahlenther Onkol ; 200(5): 418-424, 2024 May.
Article in English | MEDLINE | ID: mdl-38488899

ABSTRACT

PURPOSE: This study aimed to assess the margin for the planning target volume (PTV) using the Van Herk formula. We then validated the proposed margin by real-time magnetic resonance imaging (MRI). METHODS: An analysis of cone-beam computed tomography (CBCT) data from early glottic cancer patients was performed to evaluate organ motion. Deformed clinical target volumes (CTV) after rigid registration were acquired using the Velocity program (Varian Medical Systems, Palo Alto, CA, USA). Systematic (Σ) and random errors (σ) were evaluated. The margin for the PTV was defined as 2.5 Σ + 0.7 σ according to the Van Herk formula. To validate this margin, we accrued healthy volunteers. Sagittal real-time cine MRI was conducted using the ViewRay system (ViewRay Inc., Oakwood Village, OH, USA). Within the obtained sagittal images, the vocal cord was delineated. The movement of the vocal cord was summed up and considered as the internal target volume (ITV). We then assessed the degree of overlap between the ITV and the PTV (vocal cord plus margins) by calculating the volume overlap ratio, represented as (ITV∩PTV)/ITV. RESULTS: CBCTs of 17 early glottic patients were analyzed. Σ and σ were 0.55 and 0.57 for left-right (LR), 0.70 and 0.60 for anterior-posterior (AP), and 1.84 and 1.04 for superior-inferior (SI), respectively. The calculated margin was 1.8 mm (LR), 2.2 mm (AP), and 5.3 mm (SI). Four healthy volunteers participated for validation. A margin of 3 mm (AP) and 5 mm (SI) was applied to the vocal cord as the PTV. The average volume overlap ratio between ITV and PTV was 0.92 (range 0.85-0.99) without swallowing and 0.77 (range 0.70-0.88) with swallowing. CONCLUSION: By evaluating organ motion by using CBCT, the margin was 1.8 (LR), 2.2 (AP), and 5.3 mm (SI). The margin acquired using CBCT fitted well in real-time cine MRI. Given that swallowing during radiotherapy can result in a substantial displacement, it is crucial to consider strategies aimed at minimizing swallowing and related motion.


Subject(s)
Cone-Beam Computed Tomography , Glottis , Laryngeal Neoplasms , Magnetic Resonance Imaging, Cine , Humans , Cone-Beam Computed Tomography/methods , Magnetic Resonance Imaging, Cine/methods , Glottis/diagnostic imaging , Male , Laryngeal Neoplasms/diagnostic imaging , Laryngeal Neoplasms/radiotherapy , Middle Aged , Female , Adult , Aged , Organ Motion , Computer Systems , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity
19.
Phys Med ; 120: 103323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461635

ABSTRACT

PURPOSE: We investigated interplay effects and treatment time (TT) in scanned proton therapy for lung cancer patients. We compared free-breathing (FB) approaches with multiple rescanning strategies and respiratory-gating (RG) methods with various gating widths to identify the superior irradiation technique. METHODS: Plans were created with 4/1, 2/2, and 1/4 layered/volume rescans of FB (L4V1, L2V2, and L1V4), and 50%, 30%, and 10% gating widths of the total respiratory curves (G50, G30, and G10) of the RG plans with L4V1. We calculated 4-dimensional dynamic doses assuming a constant sinusoidal curve for six irradiation methods. The reconstructed doses per fraction were compared with planned doses in terms of dose differences in 99% clinical-target-volume (CTV) (ΔD99%), near-maximum dose differences (ΔD2%) at organs-at-risk (OARs), and TT. RESULTS: The mean/minimum CTV ΔD99% values for FB were -1.0%/-4.9%, -0.8%/-4.3%, and -0.1%/-1.0% for L4V1, L2V2, and L1V4, respectively. Those for RG were -0.3%/-1.7%, -0.1%/-1.0%, and 0.0%/-0.5% for G50, G30, and G10, respectively. The CTV ΔD99% of the RGs with less than 50% gate width and the FBs of L1V4 were within the desired tolerance (±3.0%), and the OARs ΔD2% for RG were lower than those for FB. The mean TTs were 90, 326, 824, 158, 203, and 422 s for L4V1, L2V2, L1V4, G50, G30, and G10, respectively. CONCLUSIONS: FB (L4V1) is the most efficient treatment, but not necessarily the optimal choice due to interplay effects. To satisfy both TT extensions and interplay, RG with a gate width as large as possible within safety limits is desirable.


Subject(s)
Lung Neoplasms , Proton Therapy , Humans , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Respiration , Radiotherapy Dosage , Four-Dimensional Computed Tomography/methods
20.
Phys Med ; 120: 103331, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484461

ABSTRACT

PURPOSE: Within a multi-institutional project, we aimed to assess the transferability of knowledge-based (KB) plan prediction models in the case of whole breast irradiation (WBI) for left-side breast irradiation with tangential fields (TF). METHODS: Eight institutions set KB models, following previously shared common criteria. Plan prediction performance was tested on 16 new patients (2 pts per centre) extracting dose-volume-histogram (DVH) prediction bands of heart, ipsilateral lung, contralateral lung and breast. The inter-institutional variability was quantified by the standard deviations (SDint) of predicted DVHs and mean-dose (Dmean). The transferability of models, for the heart and the ipsilateral lung, was evaluated by the range of geometric Principal Component (PC1) applicability of a model to test patients of the other 7 institutions. RESULTS: SDint of the DVH was 1.8 % and 1.6 % for the ipsilateral lung and the heart, respectively (20 %-80 % dose range); concerning Dmean, SDint was 0.9 Gy and 0.6 Gy for the ipsilateral lung and the heart, respectively (<0.2 Gy for contralateral organs). Mean predicted doses ranged between 4.3 and 5.9 Gy for the ipsilateral lung and 1.1-2.3 Gy for the heart. PC1 analysis suggested no relevant differences among models, except for one centre showing a systematic larger sparing of the heart, concomitant to a worse PTV coverage, due to high priority in sparing the left anterior descending coronary artery. CONCLUSIONS: Results showed high transferability among models and low inter-institutional variability of 2% for plan prediction. These findings encourage the building of benchmark models in the case of TF-WBI.


Subject(s)
Breast Neoplasms , Radiotherapy, Intensity-Modulated , Thoracic Wall , Humans , Female , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Breast , Organs at Risk/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...